Seeing the quantum future… literally

University of Sydney Professor of Quantum Physics & Quantum Technology Michael Biercuk. Credit: University of Sydney
Uncategorized
Share

From phys.org > January 17, 2017 > SilentCircle > Uncategorized

University of Sydney Professor of Quantum Physics & Quantum Technology Michael Biercuk. Credit: University of Sydney
University of Sydney Professor of Quantum Physics & Quantum Technology Michael Biercuk. Credit: University of Sydney

“This works because the rules that govern how the ball will move, like gravity, are regular and known. But what if the rules changed randomly while the ball was on its way to you? In that case it’s next to impossible to predict the future behavior of that ball.

“And yet this situation is exactly what we had to deal with because the disintegration of quantum systems is random. Moreover, in the quantum realm observation erases quantumness, so our team needed to be able to guess how and when the system would randomly break.

“We effectively needed to swing at the randomly moving tennis ball while blindfolded.”
The team turned to machine learning for help in keeping their quantum systems – qubits realised in trapped atoms – from breaking.

What might look like random behavior actually contained enough information for a computer program to guess how the system would change in the future. It could then predict the future without direct observation, which would otherwise erase the system’s useful characteristics.

The predictions were remarkably accurate, allowing the team to use their guesses preemptively to compensate for the anticipated changes.

Doing this in real time allowed the team to prevent the disintegration of the quantum character, extending the useful lifetime of the qubits.

“We know that building real quantum technologies will require major advances in our ability to control and stabilise qubits – to make them useful in applications,” Professor Biercuk said.
Our techniques apply to any qubit, built in any technology, including the special superconducting circuits being used by major corporations.

“We’re excited to be developing new capabilities that turn quantum systems from novelties into useful technologies. The quantum future is looking better all the time,” Professor Biercuk said.

Read more at: https://phys.org/news/2017-01-quantum-future-literally.html#jCp


Uncategorized
No more dissident voices: Succumb to Facebook & Twitter’s demands or get banned (or both)
Share

A recent purge by Facebook and Twitter of a host of independent media sites has pushed thousands of people out of work and has killed one of the most effective forms of expressing political dissent. Related PostsThis Is What Mind Control Looks Like – VIDEOWhen It Comes to Fake News, …

Uncategorized
‘Ancient Egyptian pigment can boost energy efficiency’
Share

A colour developed by Egyptians thousands of years ago can boost energy efficiency by cooling rooftops and walls, and could also enable solar generation of electricity via windows, scientists say. Egyptian blue, derived from calcium copper silicate, was routinely used on ancient depictions of gods and royalty, according to the …

Uncategorized
Father Of World Wide Web Launches Platform Which Aims To Radically Decentralize The Internet
Share

“For people who want to make sure the Web serves humanity, we have to concern ourselves with what people are building on top of it,” Tim Berners-Lee told Vanity Fair last month. “I was devastated” he said while going through a litany of harmful and dangerous developments of the past three decades …